Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

nQuire: a statistical framework for ploidy estimation using next generation sequencing.

Identifieur interne : 000616 ( Main/Exploration ); précédent : 000615; suivant : 000617

nQuire: a statistical framework for ploidy estimation using next generation sequencing.

Auteurs : Clemens L. Wei [Allemagne] ; Marina Pais [Royaume-Uni] ; Liliana M. Cano [Royaume-Uni, États-Unis] ; Sophien Kamoun [Royaume-Uni] ; Hernán A. Burbano [Allemagne]

Source :

RBID : pubmed:29618319

Descripteurs français

English descriptors

Abstract

BACKGROUND

Intraspecific variation in ploidy occurs in a wide range of species including pathogenic and nonpathogenic eukaryotes such as yeasts and oomycetes. Ploidy can be inferred indirectly - without measuring DNA content - from experiments using next-generation sequencing (NGS). We present nQuire, a statistical framework that distinguishes between diploids, triploids and tetraploids using NGS. The command-line tool models the distribution of base frequencies at variable sites using a Gaussian Mixture Model, and uses maximum likelihood to select the most plausible ploidy model. nQuire handles large genomes at high coverage efficiently and uses standard input file formats.

RESULTS

We demonstrate the utility of nQuire analyzing individual samples of the pathogenic oomycete Phytophthora infestans and the Baker's yeast Saccharomyces cerevisiae. Using these organisms we show the dependence between reliability of the ploidy assignment and sequencing depth. Additionally, we employ normalized maximized log- likelihoods generated by nQuire to ascertain ploidy level in a population of samples with ploidy heterogeneity. Using these normalized values we cluster samples in three dimensions using multivariate Gaussian mixtures. The cluster assignments retrieved from a S. cerevisiae population recovered the true ploidy level in over 96% of samples. Finally, we show that nQuire can be used regionally to identify chromosomal aneuploidies.

CONCLUSIONS

nQuire provides a statistical framework to study organisms with intraspecific variation in ploidy. nQuire is likely to be useful in epidemiological studies of pathogens, artificial selection experiments, and for historical or ancient samples where intact nuclei are not preserved. It is implemented as a stand-alone Linux command line tool in the C programming language and is available at https://github.com/clwgg/nQuire under the MIT license.


DOI: 10.1186/s12859-018-2128-z
PubMed: 29618319
PubMed Central: PMC5885312


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">nQuire: a statistical framework for ploidy estimation using next generation sequencing.</title>
<author>
<name sortKey="Wei, Clemens L" sort="Wei, Clemens L" uniqKey="Wei C" first="Clemens L" last="Wei">Clemens L. Wei</name>
<affiliation wicri:level="3">
<nlm:affiliation>Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tuebingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pais, Marina" sort="Pais, Marina" uniqKey="Pais M" first="Marina" last="Pais">Marina Pais</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Sainsbury Laboratory, Norwich, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Sainsbury Laboratory, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cano, Liliana M" sort="Cano, Liliana M" uniqKey="Cano L" first="Liliana M" last="Cano">Liliana M. Cano</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Sainsbury Laboratory, Norwich, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Sainsbury Laboratory, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Indian River Research and Education Center, University of Florida, Fort Pierce, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Indian River Research and Education Center, University of Florida, Fort Pierce</wicri:regionArea>
<wicri:noRegion>Fort Pierce</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Sainsbury Laboratory, Norwich, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Sainsbury Laboratory, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Burbano, Hernan A" sort="Burbano, Hernan A" uniqKey="Burbano H" first="Hernán A" last="Burbano">Hernán A. Burbano</name>
<affiliation wicri:level="3">
<nlm:affiliation>Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany. hernan.burbano@tuebingen.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tuebingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29618319</idno>
<idno type="pmid">29618319</idno>
<idno type="doi">10.1186/s12859-018-2128-z</idno>
<idno type="pmc">PMC5885312</idno>
<idno type="wicri:Area/Main/Corpus">000778</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000778</idno>
<idno type="wicri:Area/Main/Curation">000778</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000778</idno>
<idno type="wicri:Area/Main/Exploration">000778</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">nQuire: a statistical framework for ploidy estimation using next generation sequencing.</title>
<author>
<name sortKey="Wei, Clemens L" sort="Wei, Clemens L" uniqKey="Wei C" first="Clemens L" last="Wei">Clemens L. Wei</name>
<affiliation wicri:level="3">
<nlm:affiliation>Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tuebingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pais, Marina" sort="Pais, Marina" uniqKey="Pais M" first="Marina" last="Pais">Marina Pais</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Sainsbury Laboratory, Norwich, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Sainsbury Laboratory, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cano, Liliana M" sort="Cano, Liliana M" uniqKey="Cano L" first="Liliana M" last="Cano">Liliana M. Cano</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Sainsbury Laboratory, Norwich, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Sainsbury Laboratory, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Indian River Research and Education Center, University of Florida, Fort Pierce, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Indian River Research and Education Center, University of Florida, Fort Pierce</wicri:regionArea>
<wicri:noRegion>Fort Pierce</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Sainsbury Laboratory, Norwich, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Sainsbury Laboratory, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Burbano, Hernan A" sort="Burbano, Hernan A" uniqKey="Burbano H" first="Hernán A" last="Burbano">Hernán A. Burbano</name>
<affiliation wicri:level="3">
<nlm:affiliation>Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany. hernan.burbano@tuebingen.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tuebingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC bioinformatics</title>
<idno type="eISSN">1471-2105</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Genome, Fungal (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (methods)</term>
<term>Ploidies (MeSH)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Sequence Analysis, DNA (methods)</term>
<term>Software (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence d'ADN (méthodes)</term>
<term>Génome fongique (MeSH)</term>
<term>Logiciel (MeSH)</term>
<term>Ploïdies (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Séquençage nucléotidique à haut débit (méthodes)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>High-Throughput Nucleotide Sequencing</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Séquençage nucléotidique à haut débit</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genome, Fungal</term>
<term>Ploidies</term>
<term>Software</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génome fongique</term>
<term>Logiciel</term>
<term>Ploïdies</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Intraspecific variation in ploidy occurs in a wide range of species including pathogenic and nonpathogenic eukaryotes such as yeasts and oomycetes. Ploidy can be inferred indirectly - without measuring DNA content - from experiments using next-generation sequencing (NGS). We present nQuire, a statistical framework that distinguishes between diploids, triploids and tetraploids using NGS. The command-line tool models the distribution of base frequencies at variable sites using a Gaussian Mixture Model, and uses maximum likelihood to select the most plausible ploidy model. nQuire handles large genomes at high coverage efficiently and uses standard input file formats.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We demonstrate the utility of nQuire analyzing individual samples of the pathogenic oomycete Phytophthora infestans and the Baker's yeast Saccharomyces cerevisiae. Using these organisms we show the dependence between reliability of the ploidy assignment and sequencing depth. Additionally, we employ normalized maximized log- likelihoods generated by nQuire to ascertain ploidy level in a population of samples with ploidy heterogeneity. Using these normalized values we cluster samples in three dimensions using multivariate Gaussian mixtures. The cluster assignments retrieved from a S. cerevisiae population recovered the true ploidy level in over 96% of samples. Finally, we show that nQuire can be used regionally to identify chromosomal aneuploidies.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>nQuire provides a statistical framework to study organisms with intraspecific variation in ploidy. nQuire is likely to be useful in epidemiological studies of pathogens, artificial selection experiments, and for historical or ancient samples where intact nuclei are not preserved. It is implemented as a stand-alone Linux command line tool in the C programming language and is available at https://github.com/clwgg/nQuire under the MIT license.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">29618319</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2105</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>04</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>BMC bioinformatics</Title>
<ISOAbbreviation>BMC Bioinformatics</ISOAbbreviation>
</Journal>
<ArticleTitle>nQuire: a statistical framework for ploidy estimation using next generation sequencing.</ArticleTitle>
<Pagination>
<MedlinePgn>122</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12859-018-2128-z</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Intraspecific variation in ploidy occurs in a wide range of species including pathogenic and nonpathogenic eukaryotes such as yeasts and oomycetes. Ploidy can be inferred indirectly - without measuring DNA content - from experiments using next-generation sequencing (NGS). We present nQuire, a statistical framework that distinguishes between diploids, triploids and tetraploids using NGS. The command-line tool models the distribution of base frequencies at variable sites using a Gaussian Mixture Model, and uses maximum likelihood to select the most plausible ploidy model. nQuire handles large genomes at high coverage efficiently and uses standard input file formats.</AbstractText>
<AbstractText Label="RESULTS">We demonstrate the utility of nQuire analyzing individual samples of the pathogenic oomycete Phytophthora infestans and the Baker's yeast Saccharomyces cerevisiae. Using these organisms we show the dependence between reliability of the ploidy assignment and sequencing depth. Additionally, we employ normalized maximized log- likelihoods generated by nQuire to ascertain ploidy level in a population of samples with ploidy heterogeneity. Using these normalized values we cluster samples in three dimensions using multivariate Gaussian mixtures. The cluster assignments retrieved from a S. cerevisiae population recovered the true ploidy level in over 96% of samples. Finally, we show that nQuire can be used regionally to identify chromosomal aneuploidies.</AbstractText>
<AbstractText Label="CONCLUSIONS">nQuire provides a statistical framework to study organisms with intraspecific variation in ploidy. nQuire is likely to be useful in epidemiological studies of pathogens, artificial selection experiments, and for historical or ancient samples where intact nuclei are not preserved. It is implemented as a stand-alone Linux command line tool in the C programming language and is available at https://github.com/clwgg/nQuire under the MIT license.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Weiß</LastName>
<ForeName>Clemens L</ForeName>
<Initials>CL</Initials>
<AffiliationInfo>
<Affiliation>Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pais</LastName>
<ForeName>Marina</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>The Sainsbury Laboratory, Norwich, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cano</LastName>
<ForeName>Liliana M</ForeName>
<Initials>LM</Initials>
<AffiliationInfo>
<Affiliation>The Sainsbury Laboratory, Norwich, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Indian River Research and Education Center, University of Florida, Fort Pierce, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kamoun</LastName>
<ForeName>Sophien</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>The Sainsbury Laboratory, Norwich, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Burbano</LastName>
<ForeName>Hernán A</ForeName>
<Initials>HA</Initials>
<AffiliationInfo>
<Affiliation>Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany. hernan.burbano@tuebingen.mpg.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>04</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Bioinformatics</MedlineTA>
<NlmUniqueID>100965194</NlmUniqueID>
<ISSNLinking>1471-2105</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="Y">Genome, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011003" MajorTopicYN="Y">Ploidies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="Y">Software</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Next generation sequencing</Keyword>
<Keyword MajorTopicYN="Y">Ploidy</Keyword>
<Keyword MajorTopicYN="Y">Probabilistic modeling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>12</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>03</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29618319</ArticleId>
<ArticleId IdType="doi">10.1186/s12859-018-2128-z</ArticleId>
<ArticleId IdType="pii">10.1186/s12859-018-2128-z</ArticleId>
<ArticleId IdType="pmc">PMC5885312</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Genet. 2005 Nov;6(11):836-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16304599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Protoc. 2010 Jun;2010(6):pdb.prot5448</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20516186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2017 Nov;17 (6):1156-1167</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28150424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2017 Aug 15;33(16):2575-2576</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28383704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2013;43:11.10.1-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25431634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Sep 8;166(6):1585-1596.e22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27594428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(10):e1002940</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23055926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013 May 28;2:e00731</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23741619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Mar 19;519(7543):349-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25731168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2017 Jan;30(1):45-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27957885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2000;34:401-437</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11092833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2016 Aug 09;6(8):2421-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27317778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2015 Apr 16;11(4):e1004229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25880203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>R J. 2016 Aug;8(1):289-317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27818791</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Royaume-Uni</li>
<li>États-Unis</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>District de Tübingen</li>
</region>
<settlement>
<li>Tübingen</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Bade-Wurtemberg">
<name sortKey="Wei, Clemens L" sort="Wei, Clemens L" uniqKey="Wei C" first="Clemens L" last="Wei">Clemens L. Wei</name>
</region>
<name sortKey="Burbano, Hernan A" sort="Burbano, Hernan A" uniqKey="Burbano H" first="Hernán A" last="Burbano">Hernán A. Burbano</name>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Pais, Marina" sort="Pais, Marina" uniqKey="Pais M" first="Marina" last="Pais">Marina Pais</name>
</noRegion>
<name sortKey="Cano, Liliana M" sort="Cano, Liliana M" uniqKey="Cano L" first="Liliana M" last="Cano">Liliana M. Cano</name>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Cano, Liliana M" sort="Cano, Liliana M" uniqKey="Cano L" first="Liliana M" last="Cano">Liliana M. Cano</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000616 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000616 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29618319
   |texte=   nQuire: a statistical framework for ploidy estimation using next generation sequencing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29618319" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024